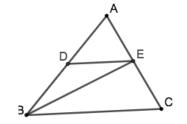
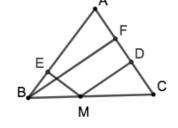
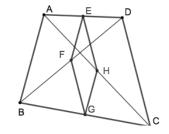
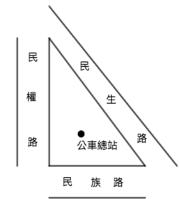
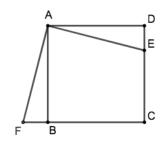

臺北市立三民國中108學年度第一學期 九年級數學科第三次定期評量試題卷

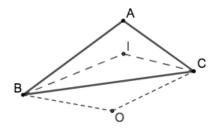

- _____年____班_____號 姓名:______
- 一、是非題: (每題2分) 若題目敘述正確,請在答案卡上畫記(A) 若題目敘述錯誤,請在答案卡上畫記(B)
- 1. 已知四邊形ABCD為菱形,則四邊形ABCD 一定有外接圓。
- 2. 正多邊形的外心、內心、重心會在同一點。
- 3. 若n是奇數, n^2 也是奇數。
- 4. 三角形的內心一定在三角形內部;三角形的 外心也一定在三角形外部。
- 5. 任何一個多邊形一定有內心。
- 6. 三角形的重心為三邊中垂線的交點。
- 7. 三角形的內心為三角平分線的交點。
- 二、選擇題: (每題 4 分) 請在四個選項當中選擇最正確的答案 並以2B鉛筆畫記於答案卡上
- 8. 如圖,若G為 \triangle ABC重心, \triangle BDG面積為 5,求 \triangle ABC面積。
 - (A) 10
 - (B) 15
 - (C) 20
 - (D) 30

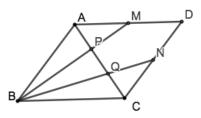

- 9. 如圖, $\triangle ABC$ 中, $\overline{AB} = 3$ 、 $\overline{BC} = 4$ 、 $\overline{CA} = 5$,G 為重心,O 為外心,求 $\overline{OG} = ?$
 - (A) $\frac{5}{3}$
 - (B) $\frac{5}{2}$
 - (C) $\frac{5}{6}$
 - (D) $\frac{5}{4}$

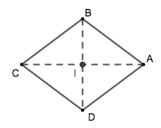

- 10. 已知 $\triangle ABC$ 的面積為52,內切圓半徑為4, $\overline{BC} = 10$,求 $\overline{AB} + \overline{CA}$
 - (A) 12
 - (B) 16
 - (C) 20
 - (D) 24
- 11. 已知正 \triangle ABC 外接圓面積為 100π ,求正 \triangle ABC 內切圓周長。
 - (A) 10π
 - (B) 20π
 - (C) 25π
 - (D) 50π
- 12. 如圖, \overline{BE} 為 $\angle ABC$ 的角平分線, \overline{DE} // \overline{BC} 。 若 $\triangle ADE$ 的周長為12, \overline{BE} = 8,求 $\triangle ABE$ 的周長。
 - (A) 16
 - (B) 18
 - (C) 20
 - (D) 24

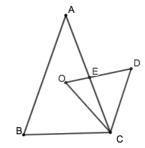

- 13. 如圖, $\triangle ABC$ 中, $\overline{AB} = \overline{AC}$, $\overline{ME} \perp \overline{AB}$, $\overline{MD} \perp \overline{AC}$, $\overline{BF} \perp \overline{AC} \circ \overline{EM} = 3$, $\overline{DM} = 4$, 求 \overline{BF} \circ
 - (A) 5
 - (B) 6
 - (C) 7
 - (D) 8

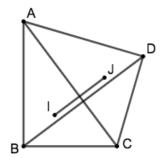

- 14. 如圖,四邊形ABCD中, $E \times F \times G \times H$ 分別 為 $\overline{AD} \times \overline{BD} \times \overline{BC} \times \overline{AC}$ 的中點, $\overline{AB} = 12 \times \overline{CD} = 16$,下列何者錯誤?
 - (A) 四邊形EFGH為菱形
 - (B) 四邊形EFGH周長為28
 - (C) $\overline{EH}//\overline{CD}$
 - (D) $\overline{EF} = 6$

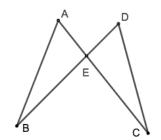

- 15. 等腰 $\triangle ABC$ 中, $\overline{AB} = \overline{AC} = 13$, $\overline{BC} = 10$,求外接圓半徑。
 - (A) $\frac{10}{3}$
 - (B) $\frac{26}{3}$
 - (C) 8
 - (D) $\frac{169}{24}$
- 16. 三民市內有三條主要幹道:「民族路、民權 路、民生路」。三條幹道在於市中心圍成一 個三角形區域(如圖),其中民族路與民權 路互相垂直。三民市的莊市長為了強化三民 市大眾運輸系統,打算找到一個地點設立公 車總站,並開闢三條道路,使得公車總站 往三條主要幹道的距離相等。已知在這三角 形區域內,民族路段長3公里、民權路段長4 公里。請問:莊市長共需開闢幾公里的新道 路?
 - (A) 1公里
 - (B) 2公里
 - (C) 2.5公里
 - (D) 3公里


- 17. 如圖,正方形ABCD中,E在 \overline{CD} 上,F在 \overline{BC} 的延長線上, $\overline{AE} \perp \overline{AF}$,下列何者正確?
 - (A) $\overline{AE} = \overline{AB}$
 - (B) $\overline{BF} = \overline{DE}$
 - (C) $\overline{AF} = \overline{AD}$
 - (D) $\angle AFB = \angle ADE$

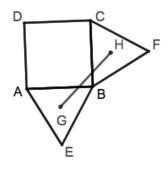

- 18. 如圖,鈍角 $\triangle ABC$ 中,O為外心,I 為內心。若 $\angle BIC = \angle BOC$,求 $\angle A$
 - (A) 108^{o}
 - (B) 120^0
 - (C) 144°
 - (D) 150°


- 19. 如圖,平行四邊形ABCD中,M、N分別為 \overline{AD} 、 \overline{CD} 的中點。若 $\triangle PQB$ 的面積為10,求五邊形PQNDM的面積。
 - (A) 30
 - (B) 25
 - (C) 24
 - (D) 20

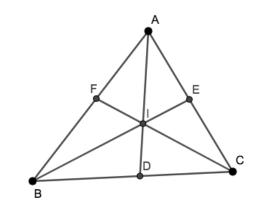

- 20. 平面座標上A(1,0)、B(0,5)、C(0,-3)。已知 $\angle BAC > 90^o$, $\triangle ABC$ 的外心在第幾象限?
 - (A) 第一象限
 - (B) 第二象限
 - (C) 第三象限
 - (D) 第四象限
- 21. 如圖,菱形ABCD中,兩對角線 $\overline{AC} = 8$ 、 $\overline{BD} = 6$ 。求菱形ABCD的內切圓半徑。
 - (A) 2
 - (B) 2.4
 - (C) 3
 - (D) 4.8


- 22. 如圖,等腰 $\triangle ABC$ 中, $\overline{AB} = \overline{AC}$,O點為外心, $\triangle COD$ 為正三角形, \overline{OD} 與 \overline{AC} 交於E 點。若 $\angle BAC = 40^o$,求 $\angle AED$ 。
 - (A) 110°
 - (B) 105°
 - (C) 100°
 - (D) 95°

- 23. 如圖,箏形ABCD中,I、J分別為 $\triangle ABC$ 、 $\triangle ACD$ 的內心。若 $\overline{AB} = 20$ 、 $\overline{BC} = 15$, $\angle B = \angle D = 90^{\circ}$,則下列何者錯誤?
 - (A) $\overline{AC} = 25$
 - (B) $\overline{BD} = 24$
 - (C) $\overline{IJ} = 12$
 - (D) $\overline{BI} = 5\sqrt{2}$


- 24. 如圖, $\overline{AB} = \overline{CD}$ 、 $\overline{AC} = \overline{BD}$ 。求證: $\angle A = \angle D$ 。以下是<u>阿哲</u>證明的過程,請問哪 一個步驟開始出現錯誤?
 - (A) $: \overline{AC} = \overline{BD}$ $: \overline{AE} = \overline{DE}$, $\overline{EB} = \overline{EC}$
 - (B) 又∠AEB = ∠DEC (對頂角)
 - (C) $\therefore \land AEB \cong \land DEC (ASA)$
 - (D) ∴ ∠A = ∠D (對應角相等)

- 25. 政府近年來大力推行「風力發電」,在台灣西部沿海地區建造大量離岸風機(見圖)。仔細觀察離岸風機的三個葉片,發現它有兩大特色:一是三個葉片長度都相等,二是旋轉時相當穩定,中央的旋轉軸應該是位於其重心上。由此兩大特色可以推論,三個葉片頂點所連成的三角形是?
 - (A) 一定是正三角形
 - (B) 任意等腰三角形
 - (C) 任意直角三角形
 - (D) 一定是等腰直角三角形



- 26. 如圖,ABCD為一正方形, $\triangle ABE$ 、 $\triangle BCF$ 為正三角形, $\overline{AB} = 6 \circ G \circ H$ 分別為 $\triangle ABE \circ \triangle BCF$ 重心。求 $\overline{GH} = ?$
 - (A) $6\sqrt{2}$
 - (B) $3\sqrt{2} + \sqrt{6}$
 - (C) $2\sqrt{6}$
 - (D) $3\sqrt{3} + \sqrt{6}$

- 三、非選擇題: (共 10 分) 請以黑色原子筆作答於答案卷上 違者不予計分
- 1. 已知:n是一個正整數。
- (1) 因式分解 $n^4 + 2n^3 + n^2$ (2分)

- (2) 利用(1)的結果,證明:
 n⁴ + 2n³ + n²必為 4 的倍數。
 (hint:可分成奇數、偶數兩種情形討論。)
 (3分)
- 2. 如圖, $\triangle ABC$ 中, \overline{AD} 平分 $\angle A$ 、 \overline{BE} 平分 $\angle B$ 、 \overline{CF} 平分 $\angle C$,D、E、F分別在 \overline{BC} 、 \overline{AC} 、 \overline{AB} 上。

- (1) 若 $\overline{AB} = c \cdot \overline{AC} = b \cdot \overline{BC} = a \circ$ 請根據內角平分線內分比性質,分別求 $\overline{BD} \cdot \overline{\overline{CE}} \cdot \overline{\overline{AF}}$ 的值。(以 $a \cdot b \cdot c$ 表示) (3分)
- (2) 承上題,證明: $\frac{\overline{BD}}{\overline{DC}} \times \frac{\overline{CE}}{\overline{EA}} \times \frac{\overline{AF}}{\overline{FB}} = 1$ (2分)

挑戰一下:

非選題第2. 題其實源自一個有趣的 定理「帥式定理」(又稱「西瓦定理」) 這個定理的敘述如下:

「若 $\triangle ABC$ 三項點與對邊上一點所連成的三線段 \overline{AD} 、 \overline{BE} 、 \overline{CF} 相交於一點O,則

$$\frac{\overline{BD}}{\overline{DC}} \times \frac{\overline{CE}}{\overline{EA}} \times \frac{\overline{AF}}{\overline{FB}} = 1 \cdots$$
公式(1)

反過來說,若 $\triangle ABC$ 中, \overline{BC} 、 \overline{AC} 、 \overline{AB} 上三點D、E、F满足上列公式(1),則 \overline{AD} 、 \overline{BE} 、 \overline{CF} 會相交於同一點。

也就是說,利用這個定理與非選題 第2. 題的結果,我們就可以證明三條角 平分線,三條中線會交於同一點。

辛苦做完這份考卷的你/妳,可以試 著證明「帥式定理」。沒有很難,利用 面積就可以證明囉!

祝大家期末考順利,寒假愉快!